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The non~tation~ coupled problem of electroelasticity in connection with the dynamic twisting of a 

finite hotlow cylinder of non-homogeneous piexoetectric material is considered in the case when the 

electric potential or shear stresses, which depend arbitrarily on time, are specified on its curvilinear 

surfaces The method of expansion in eigen vector-valued functions in the form of a structural 

algorithm of finite integral transformations is used. It is shown that a closed solution can be obtained 

for a power law of the non-homogeneity of the electric, elastic and inertial characteristics of the 

material. The results obtained hold for crystals of tetragonal symmetry of class 422 and the hexagonal 

system of class 622. 

THE PROBLEM of the integrability of the equations of the theory of the elasticity of non-homo- 
geneous isotropic and transversely isotropic bodies has been investigated fairly completely for 
the case of static loading [l-3]. When non-stationa~ interaction occurs between force and 
electric fields the method of expansion in eigen vector-functions [4] is effective. Using it 
together with the method of finite differences one can obtain solutions of some special 
problems of dynamic electro-elasticity for homogeneous bodies [4-6]. 

1. Suppose a hollow circular finite cylinder in a cylindrical system of coordinates (r, 0, z> 
occupies the region a: {a G r c b, 0 G B d 27r, 0 G z G I}, is a linearly elastic anisotropic body, 
and is made of a non-homogeneous piezoelectric material whose physical-mechanical and 
electrical characteristics vary continuously along the radius 1. We will consider the case when 
the ends of the cylinder (z =0, I) are free from stresses and electric charges, while shear 
stresses ~$2, t) and an electric potential p(z, t) act on the inner and outer curvilinear surfaces 
(r = u, b), respectively. This formulation generalizes the physically realizable boundary 
conditions, since only p( z, r) or CJ(Z, t) are in fact specified. Since the cylinder performs forced 
torsional oscillations, we will assume that at the initial instant of time (r = 0) we know the 
distribution of the tangential displacements gl(r, z) and their velocities g#, z). It should be 
noted that the components of the stress tensor and the vector of the displacements in this case 
are independent of the angular coordinate 0. 

The mathematical model of this problem includes differential equations of the motion and 
the electrostatics of a continuous piezoelectric medium [4,5,7] 
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which are related by the equations of state 
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and are supplemented by the boundary and initial conditions. 
The following representation holds for the one-dimensional non-homogeneity 

anical and electrical characteristics of the medium considered 

P=sf(r), c44 =c44f@), c66 =C66f(r), e14 =E14_f(r), El 1 =El If(r), 

~3 3 = E3 3fW 

(1.1) 

(14 

of the mech- 

(1.3) 

In relations (l.l)-(1.3) r,&, z, t) and r&, z, t) are the components of the mechanical-stress 
tensor, U(T, z, t) is the tangential component of the displacement vector, D,(r, z, r) and Dz(r, z, 
1) are the components of the electric-induction vector, cD(r, z, t) is the electric potential, c&) 
and p(r) are the elastic characteristics and the density of the material (i = 4, 6), Q(T) is the 
permittivity (k = 1,3), e,,(r) is the piezoelectric modulus of the cylinder, C,, S, E, and El4 are 
the corresponding physical-mechanical and piezoelectric characteristics of the uniform med- 
ium (the properties of these material constants are described in detail in [7]), and f(r) is an 
arbitrary dimensionless continuously differentiable heterogeneity function. 

By substituting (1.2) and (1.3) into (1.1) we obtain a system of equations of dynamic torsion 
of a heterogeneous piezoelectric cylinder when combined force and electric fields act on it, and 
also the boundary conditions 
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u-- v)=u*(z, t), @=O, r=a 
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(1.6) 

$v- _! v=O, @=p(z, t), r=b 
r 

v=&(r,z), v'=g2(r,z), t=O, F(r)=f’(r)/f(r)+rT1, c7* =0/f(a) (1.7) 

The prime denotes differentiation with respect to r, and the asterisk denotes differentiation 
with respect to t. 

2. The initial-value problem (1.4)-(1.7) considered can be solved by the method of integral 
transform. We will first use the finite cosine and sine Fourier transforms with respect to the 
variable z, taking the boundary conditions (1.5) into account. The boundary-value problem in 
the transformants v,(T, n, t), ar(r, n, r) obtained in transform space can then be reduced to 
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standard form. To do this we introduce the representation 

By substituting (2.1) into the equations and boundary conditions, taking into account the 
relations 

h; (r) + F(r) h; (r) - [r-l F(r) + E-l a; ] h, (r) = 0 

h;(r) + F(r) hJ (r) - x-1 a; h,(r) = 0 
(2.2) 

h;(u) - a-‘h,(a) = c,-: , h,(u) = 0, h;(b) - b-‘h, (b) = 0, h,(b) = 1 (2.3) 

we reduce the transformed boundary-value problem to the standard form 

av, 1 
---vc=o, qs=o, r=a,b 

ar r 

(2.4) 

(2.5) 

V,=G,,(r, n), V;=G,,(r, n), t=O P-6) 

Here 

I@& n, r),pS(q r) 1 =jol@(r, z, r>,p(z, r)] sina,zdz; a, = nnP 

G,,k n)=glck n)-h,Wh, 01, G2ck n)=gzck n)-h,(r)&(n, 0) 

~=G&44, x=E,1/&3 

We now apply the degenerate finite integral transformation with respect to the variable r to 
boundary-value problem (2.4)-(2.6), i.e. a transformation of the form [8]t 

4@jn,n, Q=J”m(%(r,n, t)K~@in,rM 
a 

(2.8) 

I WC n, 0, cpsk n, 0 I =,I, 4(X in , n, t) I KI CL , d, 1:~ (b, r) f 11 Kin K2 (2.9) 

IlKin II’ =ym(r)K:(Ain,r)dr 
a 

Here A,(i=1,2,.. . ) are positive parameters forming a denumerable set, and II Ki. II is the 
norm of the vector-valued function of the kernel of the degenerate transformation. 

t&e also SENITSKII Yu. E., Investigation of the elastic strain of structural components in the case of dynamic actions 

by the method of finite integral transformations. Izd. Sarat. Gos. Univ., Saratov, 1985. 
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For the system of Eqs (2.4) considered, the weighting function is defined by the following 
quadrature [9] 

m (r) = exp vF(r) dr] (2.10) 

A feature of the finite integral transformation introduced is the fact that its transform (2.8) 
and the inversion formula (2.9), represented in vector form, contain a different number of 
~om~nents of the vector fiction of the kernel K(.&, r). The expansions (2.9) hold when the 
following orthogonality relation is satisfied [4] 

Pm(r)KI(~j,,r)K,(A,,,r)dr=6j IlKf, II2 (2.11) 

where S/ is the Kronecker delta. 
It was shown in [lo] that when the transforms q(A,, n, t) (i = 1, 2, . . . ) are bounded, the 

uniqueness of the representations and the convergence of the expansions in the metric of space 
& defined by the inversion formulae (2.9) is ensured. 

Following the structural algorithm of the finite integral transformation method [S] we 
multiply the first equation of (2.4) and the initial conditions (2.6) by m(r)lu,(&, I), and the 
second equation by ~~)~*~~, r), and we integrate over the interval [a, b] and add. Then 
integrating by parts and ~tisfying the conditions 

g c,,m(~)[(~VC/ar)Kl - V,KIl + &4~,mt~)(cb,~~ - v&2) + 

+Ellm(mdaw2 - cp,Gl 1 I”, =o (2.12) 

[ m(r)[VJ(K1, K2) +qsMWl, K2)1dr=-G,C66 ,” mWcW~ (2.13) 
a 

the first of which is the bilinear form at the ends of the interval equated to zero, while the 
second is the operational property, we obtain a denumerable system of Cauchy problems for 
the transform q(&, n,t) 

q**(&,n, r)+~~~~(~~~,~, t)=-S+N@jn,n, t), i-1,2, . . . 

q&i,, n, O)=Gr&n, n), 4 @in, n, ~XG=O =G2(&, n), f=O 

Here o, are the angular frequencies of torsional oscillations of the cylinder 

(2.14) 

From Eq. (2.14) we can determine the transform of the finite integral transformation 
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3. We will now consider relations (2.12) and (2.13), which, together with the boundary 
conditions (2.9, enable us to formulate the homogeneous boundary-value problem for the 
components K, and K, of the kernel of the transformation. From (2.13) we obtain the system 
of equations 

L(&,Kd+X;,C&l =O, M(K,, Kz)=O (3.1) 

Equations (2.12) and (2.5) lead to the corresponding conditions 

KiOin, r) - ~-‘KI @in, r)=O, K,(&r)=O, r=u, b (3.2) 

Note that the eigen functions of the boundary-value problem (3.1), (3.2) satisfy the 
orthogonality relationship (2.11) and, consequently, the boundary-value problem (3.1), (3.2) is 
self-adjoint. 

We will consider the problem of the integrability of system (3.1), since this is connected with 
the possibility of constructing a closed solution of the problem in question. By differentiating 
the second equation of (3.1) and bearing in mind the operator equation 

[KI, +F(r)K,]‘=K; +F(r)K; - r-‘F(r)Kk, k= 1,2 (3.3) 

we conclude that system (3.1) is equivalent to a fourth-order resolvant 

d2 
V2 =- 

F dr2 
+ F(r) $- r-IF(r) 

We introduce the generating equation 

and from (3.4) we find 

Reverting to Eqs (3.3) and (1.8), we obtain 

F(r)=(m + I)r_‘, f(r)=rrn (3.7) 

Here m is an arbitrary real constant. 
Taking expressions (3.7) into account and making the replacement of variables in accord- 

ance with the formulae 

KIN&,, r)=rwm’* W,(X), x=liinr, IV= 1, 2. (3.8) 

we can reduce (3.6) to a Bessel equation in W,(x). 
If we take into account the linearity of differential equation (3.4) and also relation (3.8), its 

general solution can now be represented as follows: 

K,Oin,r)=~ Kuv@in,r)=r-m’2 i MinNJm/2+1(&nNr)+ 
N=l N=l 
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‘BinNYmf2+1(~inN~~.)l 

where Jn1,2+1(. . -) and Ym,2+1(. - .) are cylindrical functions 
AM, BkN are arbitrary constants of integration. 

(3.9) 

of the first and second kind, and 

Expanding relations (3.6) and (3.9) we can deter~ne from the first equation of system (3.1) 
the second component of the kernel of the transform 

K2 @in t r, = 
c44 

- remf2~zl &nN 4i-,‘N[AinivJrn/Z(~inNr)+BinNYm,2(~inNr)’)I 
El& 

(3.10) 

&~H=EE~~N + a;“, AinN, N= 1,2 

The weighting function of the finite integral transform can be calculated from (2.10) and 
(3.7) 

m(r)=P+l (3.11) 

while the square of the norm can be calculated from expressions (2.9) and (3.9)-(3.11). 
By substituting expressions (3.9) and (3.10) into (3.2) we can form a homogeneous system of 

algebraic equations in 4, Bti. From the condition for the solution to be non-trivial we 
obtain a transcendental equation for determining the eigen values &,, and we can find AinN, 

BtiN 

D&m)= detask = 0, S, k = 1,2,3,4 (3.12) 

Bin2 = D4 = d&ask, S, k= 1, 2, 3, AinN=DAr, BinI =Ds (3.13) 

The determinants Q, D, and Da follow from D4 by replacing the first, second and third 
columns respectively by colon {4d ~~24 h). 

In (3.12) and (3.13) we have introduced the following notation 

ff,k=Pink~~~kJm/2(Einkr), s, k= 1, 2, r=a, b for s= I, 2 

a,k=Pi~,k_2E;-,‘,k_2Ymf2(~in,k-2t)r S=l,2, k=3,4, r=a, b for s= 1,2 

a,k=~i;inkJm,2+2(finkr), s=3,4, k=l,2, r=a, bfor s=3,4 

ask = &&k-2 Ym/2+2f&%,k-.2 r), s, k=3,4, r=a, b for s=3,4 

4. The concluding stage of the investigation is the determination of the functions h,(r), h,(r) 

which occur in (2.1). We will use Eqs (2.2) and (3.7). Their general integrals can be written in 
terms of modified Bessel functions 1J. . .), K,(. . .). Taking boundary conditions (2.3) into 
account we obtain 

1 
h,(r) =- (qw Km/2+2(7nb)lm/2+1(7nr)+1m/2+2(7nb)Km/2+1(7nr) 

7&66 r Imf2+2(7na)Kmf2+2(7nb) -Imf2+2(7nb)Kmf2+2(7na) (4.1) 

h,(r) = (pf”‘l 
&&WOOLnr) - &&+>&@,r) 

~~~~a~~~~~b) -~~~~~)~~~~a) 

Applying the formulae for the inversion of a degenerate finite integral transform (2.9) and a 
finite Fourier transform successively to expressions (2.15) and (2.1) we obtain expressions for 
the functions of the tangential displacements and the electric potential of the cylinder 

u(r, Z, f) = ii (1&n, n, f)K, (Ai, r)liKj, Urn2 ] (4.2) 
n=o 

52,’ COSOI, Z[h, (r)u, (It, t) + i 
i=l 
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s-z, = ( l/2 for n 20 

1 for n =O 

Equations (4.2) satisfy the differential equations (1.4) and the boundary conditions (lS)- 
(1.7), i.e. they represent a closed solution of the problem for a power law (3.7) of the change 
along the radius of the physical-mechanical and electrical characteristics of the cylinder. 
Expressions (4.2) were constructed for arbitrary actions, and hence, taking different functional 
relationships as CJ(Z, t), p(z, t) and calculating the transformants (2.7) and (2.19, the corres- 
ponding particular results can be obtained. In the case when m= 0, solution (4.2) holds for a 
uniform piezoelectric cylinder. It should be noted that Eqs (1.4) for m = 0, F(r) = r-l represent 
(3.43) and (3.44) of [7] written in cylindrical coordinates for the case of antiplane strain, and 
crystals of classes 422 and 622 [7, Table 3.41. 
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